rompy.swan.components.physics.TRIAD_LTA#
- pydantic model rompy.swan.components.physics.TRIAD_LTA[source]#
Triad interactions with the LTA method of Eldeberky (1996).
TRIAD LTA [trfac] [cutfr] BIPHHASE ELDEBERKY|DEWIT
References
Eldeberky, Y., Polnikov, V. and Battjes, J.A., 1996. A statistical approach for modeling triad interactions in dispersive waves. In Coastal Engineering 1996 (pp. 1088-1101).
Note
This method to compute the triad interactions is only supported in SWAN >= 41.45.
Examples
In [185]: from rompy.swan.components.physics import TRIAD_LTA In [186]: triad = TRIAD_LTA() In [187]: print(triad.render()) TRIAD LTA In [188]: triad = TRIAD_LTA( .....: trfac=0.8, .....: cutfr=2.5, .....: biphase={"model_type": "eldeberky", "urcrit": 0.63}, .....: ) .....: In [189]: print(triad.render()) TRIAD LTA trfac=0.8 cutfr=2.5 BIPHASE ELDEBERKY urcrit=0.63
Show JSON schema
{ "title": "TRIAD_LTA", "description": "Triad interactions with the LTA method of Eldeberky (1996).\n\n.. code-block:: text\n\n TRIAD LTA [trfac] [cutfr] BIPHHASE ELDEBERKY|DEWIT\n\nReferences\n----------\nEldeberky, Y., Polnikov, V. and Battjes, J.A., 1996. A statistical approach for\nmodeling triad interactions in dispersive waves. In Coastal Engineering 1996\n(pp. 1088-1101).\n\nNote\n----\nThis method to compute the triad interactions is only supported in SWAN >= 41.45.\n\nExamples\n--------\n\n.. ipython:: python\n :okwarning:\n\n from rompy.swan.components.physics import TRIAD_LTA\n triad = TRIAD_LTA()\n print(triad.render())\n triad = TRIAD_LTA(\n trfac=0.8,\n cutfr=2.5,\n biphase={\"model_type\": \"eldeberky\", \"urcrit\": 0.63},\n )\n print(triad.render())", "type": "object", "properties": { "model_type": { "default": "lta", "description": "Model type discriminator", "enum": [ "lta", "LTA" ], "title": "Model Type", "type": "string" }, "trfac": { "anyOf": [ { "type": "number" }, { "type": "null" } ], "default": null, "description": "Scaling factor that controls the intensity of the triad interaction due to LTA (SWAN default: 0.8)", "title": "Trfac" }, "cutfr": { "anyOf": [ { "type": "number" }, { "type": "null" } ], "default": null, "description": "Controls the maximum frequency that is considered in the LTA computation. The value of `cutfr` is the ratio of this maximum frequency over the mean frequency (SWAN default: 2.5)", "title": "Cutfr" }, "biphase": { "anyOf": [ { "$ref": "#/$defs/ELDEBERKY" }, { "$ref": "#/$defs/DEWIT" }, { "type": "null" } ], "default": null, "description": "Defines the parameterization of biphase (self-self interaction) (SWAN default: ELDEBERKY)", "title": "Biphase" } }, "$defs": { "DEWIT": { "additionalProperties": false, "description": "Biphase of De Wit (2022).\n\n.. code-block:: text\n\n BIPHASE DEWIT [lpar]\n\nBiphase parameterization based on bed slope and peak period of De Wit (2022).\n\nReferences\n----------\nDe Wit, F.P., 2022. Wave shape prediction in complex coastal systems (Doctoral\ndissertation, PhD. thesis. Delft University of Technology. https://repository.\ntudelft. nl/islandora/object/uuid% 3A0fb850a4-4294-4181-9d74-857de21265c2).\n\nExamples\n--------\n\n.. ipython:: python\n :okwarning:\n\n from rompy.swan.subcomponents.physics import DEWIT\n biphase = DEWIT()\n print(biphase.render())\n biphase = DEWIT(lpar=0.0)\n print(biphase.render())", "properties": { "model_type": { "const": "dewit", "default": "dewit", "description": "Model type discriminator", "title": "Model Type", "type": "string" }, "lpar": { "anyOf": [ { "type": "number" }, { "type": "null" } ], "default": null, "description": "Scales spatial averaging of the De Wit's biphase in terms of a multiple of peak wave length of the incident wave field. Note: `lpar` = 0` means no averaging (SWAN default: 0)", "title": "Lpar" } }, "title": "DEWIT", "type": "object" }, "ELDEBERKY": { "additionalProperties": false, "description": "Biphase of Eldeberky (1999).\n\n.. code-block:: text\n\n BIPHASE ELDEBERKY [urcrit]\n\nBiphase parameterisation as a funtion of the Ursell number of Eldeberky (1999).\n\nReferences\n----------\nEldeberky, Y., Polnikov, V. and Battjes, J.A., 1996. A statistical approach for\nmodeling triad interactions in dispersive waves. In Coastal Engineering 1996\n(pp. 1088-1101).\n\nEldeberky, Y. and Madsen, P.A., 1999. Deterministic and stochastic evolution\nequations for fully dispersive and weakly nonlinear waves. Coastal Engineering,\n38(1), pp.1-24.\n\nDoering, J.C. and Bowen, A.J., 1995. Parametrization of orbital velocity\nasymmetries of shoaling and breaking waves using bispectral analysis. Coastal\nengineering, 26(1-2), pp.15-33.\n\nExamples\n--------\n\n.. ipython:: python\n :okwarning:\n\n from rompy.swan.subcomponents.physics import ELDEBERKY\n biphase = ELDEBERKY()\n print(biphase.render())\n biphase = ELDEBERKY(urcrit=0.63)\n print(biphase.render())", "properties": { "model_type": { "const": "eldeberky", "default": "eldeberky", "description": "Model type discriminator", "title": "Model Type", "type": "string" }, "urcrit": { "anyOf": [ { "type": "number" }, { "type": "null" } ], "default": null, "description": "The critical Ursell number appearing in the parametrization. Note: the value of `urcrit` is setted by Eldeberky (1996) at 0.2 based on a laboratory experiment, whereas Doering and Bowen (1995) employed the value of 0.63 based on the field experiment data (SWAN default: 0.63)", "title": "Urcrit" } }, "title": "ELDEBERKY", "type": "object" } }, "additionalProperties": false }
- Fields:
- field biphase: ELDEBERKY | DEWIT | None = None#
Defines the parameterization of biphase (self-self interaction) (SWAN default: ELDEBERKY)
- field cutfr: float | None = None#
Controls the maximum frequency that is considered in the LTA computation. The value of cutfr is the ratio of this maximum frequency over the mean frequency (SWAN default: 2.5)
- field model_type: Literal['lta', 'LTA'] = 'lta'#
Model type discriminator
- field trfac: float | None = None#
Scaling factor that controls the intensity of the triad interaction due to LTA (SWAN default: 0.8)