rompy.swan.subcomponents.physics.ELDEBERKY#
- pydantic model rompy.swan.subcomponents.physics.ELDEBERKY[source]#
Biphase of Eldeberky (1999).
BIPHASE ELDEBERKY [urcrit]
Biphase parameterisation as a funtion of the Ursell number of Eldeberky (1999).
References
Eldeberky, Y., Polnikov, V. and Battjes, J.A., 1996. A statistical approach for modeling triad interactions in dispersive waves. In Coastal Engineering 1996 (pp. 1088-1101).
Eldeberky, Y. and Madsen, P.A., 1999. Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coastal Engineering, 38(1), pp.1-24.
Doering, J.C. and Bowen, A.J., 1995. Parametrization of orbital velocity asymmetries of shoaling and breaking waves using bispectral analysis. Coastal engineering, 26(1-2), pp.15-33.
Examples
In [12]: from rompy.swan.subcomponents.physics import ELDEBERKY In [13]: biphase = ELDEBERKY() In [14]: print(biphase.render()) BIPHASE ELDEBERKY In [15]: biphase = ELDEBERKY(urcrit=0.63) In [16]: print(biphase.render()) BIPHASE ELDEBERKY urcrit=0.63
- field model_type: Literal['eldeberky'] = 'eldeberky'#
Model type discriminator
- field urcrit: float | None = None#
The critical Ursell number appearing in the parametrization. Note: the value of urcrit is setted by Eldeberky (1996) at 0.2 based on a laboratory experiment, whereas Doering and Bowen (1995) employed the value of 0.63 based on the field experiment data (SWAN default: 0.63)