rompy.swan.subcomponents.physics.ELDEBERKY#

pydantic model rompy.swan.subcomponents.physics.ELDEBERKY[source]#

Biphase of Eldeberky (1999).

BIPHASE ELDEBERKY [urcrit]

Biphase parameterisation as a funtion of the Ursell number of Eldeberky (1999).

References

Eldeberky, Y., Polnikov, V. and Battjes, J.A., 1996. A statistical approach for modeling triad interactions in dispersive waves. In Coastal Engineering 1996 (pp. 1088-1101).

Eldeberky, Y. and Madsen, P.A., 1999. Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coastal Engineering, 38(1), pp.1-24.

Doering, J.C. and Bowen, A.J., 1995. Parametrization of orbital velocity asymmetries of shoaling and breaking waves using bispectral analysis. Coastal engineering, 26(1-2), pp.15-33.

Examples

In [12]: from rompy.swan.subcomponents.physics import ELDEBERKY

In [13]: biphase = ELDEBERKY()

In [14]: print(biphase.render())
BIPHASE ELDEBERKY

In [15]: biphase = ELDEBERKY(urcrit=0.63)

In [16]: print(biphase.render())
BIPHASE ELDEBERKY urcrit=0.63
Fields:
field model_type: Literal['eldeberky'] = 'eldeberky'#

Model type discriminator

field urcrit: float | None = None#

The critical Ursell number appearing in the parametrization. Note: the value of urcrit is setted by Eldeberky (1996) at 0.2 based on a laboratory experiment, whereas Doering and Bowen (1995) employed the value of 0.63 based on the field experiment data (SWAN default: 0.63)

cmd() str[source]#