rompy.swan.components.physics.TRIAD_DCTA#

pydantic model rompy.swan.components.physics.TRIAD_DCTA[source]#

Triad interactions with the DCTA method of Booij et al. (2009).

TRIAD DCTA [trfac] [p] COLL|NONC BIPHHASE ELDEBERKY|DEWIT

References

Booij, N., Holthuijsen, L.H. and Bénit, M.P., 2009. A distributed collinear triad approximation in SWAN. In Proceedings Of Coastal Dynamics 2009: Impacts of Human Activities on Dynamic Coastal Processes (With CD-ROM) (pp. 1-10).

Note

This is the default method to compute the triad interactions in SWAN >= 41.45, it is not supported in earlier versions of the model.

Examples

In [180]: from rompy.swan.components.physics import TRIAD_DCTA

In [181]: triad = TRIAD_DCTA()

In [182]: print(triad.render())
TRIAD DCTA COLL

In [183]: triad = TRIAD_DCTA(
   .....:     trfac=4.4,
   .....:     p=1.3,
   .....:     noncolinear=True,
   .....:     biphase={"model_type": "dewit", "lpar": 0.0},
   .....: )
   .....: 

In [184]: print(triad.render())
TRIAD DCTA trfac=4.4 p=1.3 NONC BIPHASE DEWIT lpar=0.0

Show JSON schema
{
   "title": "TRIAD_DCTA",
   "description": "Triad interactions with the DCTA method of Booij et al. (2009).\n\n.. code-block:: text\n\n    TRIAD DCTA [trfac] [p] COLL|NONC BIPHHASE ELDEBERKY|DEWIT\n\nReferences\n----------\nBooij, N., Holthuijsen, L.H. and B\u00e9nit, M.P., 2009. A distributed collinear triad\napproximation in SWAN. In Proceedings Of Coastal Dynamics 2009: Impacts of Human\nActivities on Dynamic Coastal Processes (With CD-ROM) (pp. 1-10).\n\nNote\n----\nThis is the default method to compute the triad interactions in SWAN >= 41.45, it\nis not supported in earlier versions of the model.\n\nExamples\n--------\n\n.. ipython:: python\n    :okwarning:\n\n    from rompy.swan.components.physics import TRIAD_DCTA\n    triad = TRIAD_DCTA()\n    print(triad.render())\n    triad = TRIAD_DCTA(\n        trfac=4.4,\n        p=1.3,\n        noncolinear=True,\n        biphase={\"model_type\": \"dewit\", \"lpar\": 0.0},\n    )\n    print(triad.render())",
   "type": "object",
   "properties": {
      "model_type": {
         "default": "dcta",
         "description": "Model type discriminator",
         "enum": [
            "dcta",
            "DCTA"
         ],
         "title": "Model Type",
         "type": "string"
      },
      "trfac": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": null,
         "description": "Scaling factor that controls the intensity of the triad interaction due to DCTA (SWAN default: 4.4)",
         "title": "Trfac"
      },
      "p": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": null,
         "description": "Shape coefficient to force the high-frequency tail(SWAN default: 4/3)",
         "title": "P"
      },
      "noncolinear": {
         "default": false,
         "description": "If True, the noncolinear triad interactions with the DCTA framework are accounted for",
         "title": "Noncolinear",
         "type": "boolean"
      },
      "biphase": {
         "anyOf": [
            {
               "$ref": "#/$defs/ELDEBERKY"
            },
            {
               "$ref": "#/$defs/DEWIT"
            },
            {
               "type": "null"
            }
         ],
         "default": null,
         "description": "Defines the parameterization of biphase (self-self interaction) (SWAN default: ELDEBERKY)",
         "title": "Biphase"
      }
   },
   "$defs": {
      "DEWIT": {
         "additionalProperties": false,
         "description": "Biphase of De Wit (2022).\n\n.. code-block:: text\n\n    BIPHASE DEWIT [lpar]\n\nBiphase parameterization based on bed slope and peak period of De Wit (2022).\n\nReferences\n----------\nDe Wit, F.P., 2022. Wave shape prediction in complex coastal systems (Doctoral\ndissertation, PhD. thesis. Delft University of Technology. https://repository.\ntudelft. nl/islandora/object/uuid% 3A0fb850a4-4294-4181-9d74-857de21265c2).\n\nExamples\n--------\n\n.. ipython:: python\n    :okwarning:\n\n    from rompy.swan.subcomponents.physics import DEWIT\n    biphase = DEWIT()\n    print(biphase.render())\n    biphase = DEWIT(lpar=0.0)\n    print(biphase.render())",
         "properties": {
            "model_type": {
               "const": "dewit",
               "default": "dewit",
               "description": "Model type discriminator",
               "title": "Model Type",
               "type": "string"
            },
            "lpar": {
               "anyOf": [
                  {
                     "type": "number"
                  },
                  {
                     "type": "null"
                  }
               ],
               "default": null,
               "description": "Scales spatial averaging of the De Wit's biphase in terms of a multiple of peak wave length of the incident wave field. Note: `lpar` = 0` means no averaging (SWAN default: 0)",
               "title": "Lpar"
            }
         },
         "title": "DEWIT",
         "type": "object"
      },
      "ELDEBERKY": {
         "additionalProperties": false,
         "description": "Biphase of Eldeberky (1999).\n\n.. code-block:: text\n\n    BIPHASE ELDEBERKY [urcrit]\n\nBiphase parameterisation as a funtion of the Ursell number of Eldeberky (1999).\n\nReferences\n----------\nEldeberky, Y., Polnikov, V. and Battjes, J.A., 1996. A statistical approach for\nmodeling triad interactions in dispersive waves. In Coastal Engineering 1996\n(pp. 1088-1101).\n\nEldeberky, Y. and Madsen, P.A., 1999. Deterministic and stochastic evolution\nequations for fully dispersive and weakly nonlinear waves. Coastal Engineering,\n38(1), pp.1-24.\n\nDoering, J.C. and Bowen, A.J., 1995. Parametrization of orbital velocity\nasymmetries of shoaling and breaking waves using bispectral analysis. Coastal\nengineering, 26(1-2), pp.15-33.\n\nExamples\n--------\n\n.. ipython:: python\n    :okwarning:\n\n    from rompy.swan.subcomponents.physics import ELDEBERKY\n    biphase = ELDEBERKY()\n    print(biphase.render())\n    biphase = ELDEBERKY(urcrit=0.63)\n    print(biphase.render())",
         "properties": {
            "model_type": {
               "const": "eldeberky",
               "default": "eldeberky",
               "description": "Model type discriminator",
               "title": "Model Type",
               "type": "string"
            },
            "urcrit": {
               "anyOf": [
                  {
                     "type": "number"
                  },
                  {
                     "type": "null"
                  }
               ],
               "default": null,
               "description": "The critical Ursell number appearing in the parametrization. Note: the value of `urcrit` is setted by Eldeberky (1996) at 0.2 based on a laboratory experiment, whereas Doering and Bowen (1995) employed the value of 0.63 based on the field experiment data (SWAN default: 0.63)",
               "title": "Urcrit"
            }
         },
         "title": "ELDEBERKY",
         "type": "object"
      }
   },
   "additionalProperties": false
}

Fields:
field biphase: ELDEBERKY | DEWIT | None = None#

Defines the parameterization of biphase (self-self interaction) (SWAN default: ELDEBERKY)

field model_type: Literal['dcta', 'DCTA'] = 'dcta'#

Model type discriminator

field noncolinear: bool = False#

If True, the noncolinear triad interactions with the DCTA framework are accounted for

field p: float | None = None#

Shape coefficient to force the high-frequency tail(SWAN default: 4/3)

field trfac: float | None = None#

Scaling factor that controls the intensity of the triad interaction due to DCTA (SWAN default: 4.4)

cmd() str[source]#

Command file string for this component.