rompy.swan.components.physics.TRIAD_DCTA#
- pydantic model rompy.swan.components.physics.TRIAD_DCTA[source]#
Triad interactions with the DCTA method of Booij et al. (2009).
TRIAD DCTA [trfac] [p] COLL|NONC BIPHHASE ELDEBERKY|DEWIT
References
Booij, N., Holthuijsen, L.H. and Bénit, M.P., 2009. A distributed collinear triad approximation in SWAN. In Proceedings Of Coastal Dynamics 2009: Impacts of Human Activities on Dynamic Coastal Processes (With CD-ROM) (pp. 1-10).
Note
This is the default method to compute the triad interactions in SWAN >= 41.45, it is not supported in earlier versions of the model.
Examples
In [180]: from rompy.swan.components.physics import TRIAD_DCTA In [181]: triad = TRIAD_DCTA() In [182]: print(triad.render()) TRIAD DCTA COLL In [183]: triad = TRIAD_DCTA( .....: trfac=4.4, .....: p=1.3, .....: noncolinear=True, .....: biphase={"model_type": "dewit", "lpar": 0.0}, .....: ) .....: In [184]: print(triad.render()) TRIAD DCTA trfac=4.4 p=1.3 NONC BIPHASE DEWIT lpar=0.0
Show JSON schema
{ "title": "TRIAD_DCTA", "description": "Triad interactions with the DCTA method of Booij et al. (2009).\n\n.. code-block:: text\n\n TRIAD DCTA [trfac] [p] COLL|NONC BIPHHASE ELDEBERKY|DEWIT\n\nReferences\n----------\nBooij, N., Holthuijsen, L.H. and B\u00e9nit, M.P., 2009. A distributed collinear triad\napproximation in SWAN. In Proceedings Of Coastal Dynamics 2009: Impacts of Human\nActivities on Dynamic Coastal Processes (With CD-ROM) (pp. 1-10).\n\nNote\n----\nThis is the default method to compute the triad interactions in SWAN >= 41.45, it\nis not supported in earlier versions of the model.\n\nExamples\n--------\n\n.. ipython:: python\n :okwarning:\n\n from rompy.swan.components.physics import TRIAD_DCTA\n triad = TRIAD_DCTA()\n print(triad.render())\n triad = TRIAD_DCTA(\n trfac=4.4,\n p=1.3,\n noncolinear=True,\n biphase={\"model_type\": \"dewit\", \"lpar\": 0.0},\n )\n print(triad.render())", "type": "object", "properties": { "model_type": { "default": "dcta", "description": "Model type discriminator", "enum": [ "dcta", "DCTA" ], "title": "Model Type", "type": "string" }, "trfac": { "anyOf": [ { "type": "number" }, { "type": "null" } ], "default": null, "description": "Scaling factor that controls the intensity of the triad interaction due to DCTA (SWAN default: 4.4)", "title": "Trfac" }, "p": { "anyOf": [ { "type": "number" }, { "type": "null" } ], "default": null, "description": "Shape coefficient to force the high-frequency tail(SWAN default: 4/3)", "title": "P" }, "noncolinear": { "default": false, "description": "If True, the noncolinear triad interactions with the DCTA framework are accounted for", "title": "Noncolinear", "type": "boolean" }, "biphase": { "anyOf": [ { "$ref": "#/$defs/ELDEBERKY" }, { "$ref": "#/$defs/DEWIT" }, { "type": "null" } ], "default": null, "description": "Defines the parameterization of biphase (self-self interaction) (SWAN default: ELDEBERKY)", "title": "Biphase" } }, "$defs": { "DEWIT": { "additionalProperties": false, "description": "Biphase of De Wit (2022).\n\n.. code-block:: text\n\n BIPHASE DEWIT [lpar]\n\nBiphase parameterization based on bed slope and peak period of De Wit (2022).\n\nReferences\n----------\nDe Wit, F.P., 2022. Wave shape prediction in complex coastal systems (Doctoral\ndissertation, PhD. thesis. Delft University of Technology. https://repository.\ntudelft. nl/islandora/object/uuid% 3A0fb850a4-4294-4181-9d74-857de21265c2).\n\nExamples\n--------\n\n.. ipython:: python\n :okwarning:\n\n from rompy.swan.subcomponents.physics import DEWIT\n biphase = DEWIT()\n print(biphase.render())\n biphase = DEWIT(lpar=0.0)\n print(biphase.render())", "properties": { "model_type": { "const": "dewit", "default": "dewit", "description": "Model type discriminator", "title": "Model Type", "type": "string" }, "lpar": { "anyOf": [ { "type": "number" }, { "type": "null" } ], "default": null, "description": "Scales spatial averaging of the De Wit's biphase in terms of a multiple of peak wave length of the incident wave field. Note: `lpar` = 0` means no averaging (SWAN default: 0)", "title": "Lpar" } }, "title": "DEWIT", "type": "object" }, "ELDEBERKY": { "additionalProperties": false, "description": "Biphase of Eldeberky (1999).\n\n.. code-block:: text\n\n BIPHASE ELDEBERKY [urcrit]\n\nBiphase parameterisation as a funtion of the Ursell number of Eldeberky (1999).\n\nReferences\n----------\nEldeberky, Y., Polnikov, V. and Battjes, J.A., 1996. A statistical approach for\nmodeling triad interactions in dispersive waves. In Coastal Engineering 1996\n(pp. 1088-1101).\n\nEldeberky, Y. and Madsen, P.A., 1999. Deterministic and stochastic evolution\nequations for fully dispersive and weakly nonlinear waves. Coastal Engineering,\n38(1), pp.1-24.\n\nDoering, J.C. and Bowen, A.J., 1995. Parametrization of orbital velocity\nasymmetries of shoaling and breaking waves using bispectral analysis. Coastal\nengineering, 26(1-2), pp.15-33.\n\nExamples\n--------\n\n.. ipython:: python\n :okwarning:\n\n from rompy.swan.subcomponents.physics import ELDEBERKY\n biphase = ELDEBERKY()\n print(biphase.render())\n biphase = ELDEBERKY(urcrit=0.63)\n print(biphase.render())", "properties": { "model_type": { "const": "eldeberky", "default": "eldeberky", "description": "Model type discriminator", "title": "Model Type", "type": "string" }, "urcrit": { "anyOf": [ { "type": "number" }, { "type": "null" } ], "default": null, "description": "The critical Ursell number appearing in the parametrization. Note: the value of `urcrit` is setted by Eldeberky (1996) at 0.2 based on a laboratory experiment, whereas Doering and Bowen (1995) employed the value of 0.63 based on the field experiment data (SWAN default: 0.63)", "title": "Urcrit" } }, "title": "ELDEBERKY", "type": "object" } }, "additionalProperties": false }
- Fields:
- field biphase: ELDEBERKY | DEWIT | None = None#
Defines the parameterization of biphase (self-self interaction) (SWAN default: ELDEBERKY)
- field model_type: Literal['dcta', 'DCTA'] = 'dcta'#
Model type discriminator
- field noncolinear: bool = False#
If True, the noncolinear triad interactions with the DCTA framework are accounted for
- field p: float | None = None#
Shape coefficient to force the high-frequency tail(SWAN default: 4/3)
- field trfac: float | None = None#
Scaling factor that controls the intensity of the triad interaction due to DCTA (SWAN default: 4.4)