rompy.schism.namelists.wwminput.Nums#

pydantic model rompy.schism.namelists.wwminput.Nums[source]#

Show JSON schema
{
   "title": "Nums",
   "type": "object",
   "properties": {
      "icomp": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 3,
         "description": "Controls the integration scheme for splitting and advection. 0: All explicit. 1: Implicit geographical advection. 2: Implicit advection and semi-implicit source terms. 3: Fully implicit, no splitting.",
         "title": "Icomp"
      },
      "amethod": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 7,
         "description": "Controls the advection method in geographical space. Values 0-7 represent different schemes, including explicit, implicit, and PETSc-based methods.",
         "title": "Amethod"
      },
      "smethod": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 6,
         "description": "Controls the integration method for source terms. 0: No source terms. 1-6: Various splitting and integration schemes.",
         "title": "Smethod"
      },
      "dmethod": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 2,
         "description": "Controls the numerical method in directional space. 0: No advection. 1-4: Various schemes including Crank-Nicholson, Ultimate Quickest, RK5-WENO, and Explicit FVM Upwind.",
         "title": "Dmethod"
      },
      "rtheta": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 0.5,
         "description": "Weighing factor for DMETHOD = 1. Only useful for Crank Nicholson integration with CFL <= 2.",
         "title": "Rtheta"
      },
      "litersplit": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Splitting method. True: double Strang split. False: simple split (more efficient).",
         "title": "Litersplit"
      },
      "lfilterth": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Use a CFL filter to limit the advection velocity in directional space. Similar to WW3, but mostly unused as WWMII is always stable.",
         "title": "Lfilterth"
      },
      "maxcflth": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 1.0,
         "description": "Maximum CFL number in Theta space. Used only if LFILTERTH=True.",
         "title": "Maxcflth"
      },
      "fmethod": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 1,
         "description": "Controls the numerical method in frequency space. 0: No advection. 1: Ultimate Quickest as in WW3 (best).",
         "title": "Fmethod"
      },
      "lfiltersig": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Limit the advection velocity in frequency space. Usually False.",
         "title": "Lfiltersig"
      },
      "maxcflsig": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 1.0,
         "description": "Maximum CFL number in frequency space. Used only if LFILTERSIG=True.",
         "title": "Maxcflsig"
      },
      "llimt": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": true,
         "description": "Switch on/off Action limiter. Must mostly be turned on.",
         "title": "Llimt"
      },
      "melim": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 1,
         "description": "Formulation for the action limiter. 1: WAM group (1988). 2: Hersbach Janssen (1999). 3: For Cycle 4 formulation.",
         "title": "Melim"
      },
      "limfak": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 0.1,
         "description": "Proportionality coefficient for the action limiter. MAX_DAC_DT = Limfak * Limiter.",
         "title": "Limfak"
      },
      "ldifr": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Use phase decoupled diffraction approximation. Usually True; if crash, use False.",
         "title": "Ldifr"
      },
      "idiffr": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 1,
         "description": "Extended WAE accounting for higher order effects. 1: Holthuijsen et al. 2: Liau et al. 3: Toledo et al.",
         "title": "Idiffr"
      },
      "lconv": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Estimate convergence criteria and write to disk (quasi-steady - qstea.out).",
         "title": "Lconv"
      },
      "lcfl": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Write out CFL numbers. Use False to save time.",
         "title": "Lcfl"
      },
      "nqsiter": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 1,
         "description": "Number of quasi-steady (Q-S) sub-divisions within each WWM time step.",
         "title": "Nqsiter"
      },
      "qsconv1": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 0.98,
         "description": "Fraction of grid points that must fulfill absolute wave height criteria EPSH1.",
         "title": "Qsconv1"
      },
      "qsconv2": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 0.98,
         "description": "Fraction of grid points that must fulfill relative wave height criteria EPSH2.",
         "title": "Qsconv2"
      },
      "qsconv3": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 0.98,
         "description": "Fraction of grid points that must fulfill sum. rel. wave action criteria EPSH3.",
         "title": "Qsconv3"
      },
      "qsconv4": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 0.98,
         "description": "Fraction of grid points that must fulfill rel. avg. wave steepness criteria EPSH4.",
         "title": "Qsconv4"
      },
      "qsconv5": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 0.98,
         "description": "Fraction of grid points that must fulfill avg. rel. wave period criteria EPSH5.",
         "title": "Qsconv5"
      },
      "lexpimp": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Use implicit schemes for frequencies lower than FREQEXP. Used only if ICOMP=0.",
         "title": "Lexpimp"
      },
      "freqexp": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 0.1,
         "description": "Minimum frequency for explicit schemes. Only used if LEXPIMP=True and ICOMP=0.",
         "title": "Freqexp"
      },
      "epsh1": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 0.01,
         "description": "Convergence criteria for relative wave height.",
         "title": "Epsh1"
      },
      "epsh2": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 0.01,
         "description": "Convergence criteria for absolute wave height.",
         "title": "Epsh2"
      },
      "epsh3": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 0.01,
         "description": "Convergence criteria for the relative sum of wave action.",
         "title": "Epsh3"
      },
      "epsh4": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 0.01,
         "description": "Convergence criteria for the relative average wave steepness.",
         "title": "Epsh4"
      },
      "epsh5": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 0.01,
         "description": "Convergence criteria for the relative average wave period.",
         "title": "Epsh5"
      },
      "lvector": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Use optimized propagation routines for large high performance computers. Try False first.",
         "title": "Lvector"
      },
      "ivector": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 2,
         "description": "Used if LVECTOR=True. Different flavors of communications and propagation styles.",
         "title": "Ivector"
      },
      "ladvtest": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "For testing the advection schemes.",
         "title": "Ladvtest"
      },
      "lchkconv": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Needs to be set to True for quasi-steady mode to compute and check the QSCONVi criteria.",
         "title": "Lchkconv"
      },
      "dtmin_dyn": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 1.0,
         "description": "Minimum time step (seconds) for dynamic integration. Controls the smallest time step for triads in SMETHOD.",
         "title": "Dtmin Dyn"
      },
      "ndyniter": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 100,
         "description": "Maximum iterations for dynamic scheme before limiter is applied in the last step.",
         "title": "Ndyniter"
      },
      "dtmin_sin": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 1.0,
         "description": "Minimum time step for the full fractional step method, where each source term is integrated with its own fractional step.",
         "title": "Dtmin Sin"
      },
      "dtmin_snl4": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 1.0,
         "description": "Minimum time step for SNL4 source term in fractional step method.",
         "title": "Dtmin Snl4"
      },
      "dtmin_sds": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 1.0,
         "description": "Minimum time step for SDS source term in fractional step method.",
         "title": "Dtmin Sds"
      },
      "dtmin_snl3": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 1.0,
         "description": "Minimum time step for SNL3 source term in fractional step method.",
         "title": "Dtmin Snl3"
      },
      "dtmin_sbr": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 0.1,
         "description": "Minimum time step for SBR source term in fractional step method.",
         "title": "Dtmin Sbr"
      },
      "dtmin_sbf": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 1.0,
         "description": "Minimum time step for SBF source term in fractional step method.",
         "title": "Dtmin Sbf"
      },
      "ndyniter_sin": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 10,
         "description": "Maximum iterations for SIN source term in fractional step approach.",
         "title": "Ndyniter Sin"
      },
      "ndyniter_snl4": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 10,
         "description": "Maximum iterations for SNL4 source term in fractional step approach.",
         "title": "Ndyniter Snl4"
      },
      "ndyniter_sds": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 10,
         "description": "Maximum iterations for SDS source term in fractional step approach.",
         "title": "Ndyniter Sds"
      },
      "ndyniter_sbr": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 10,
         "description": "Maximum iterations for SBR source term in fractional step approach.",
         "title": "Ndyniter Sbr"
      },
      "ndyniter_snl3": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 10,
         "description": "Maximum iterations for SNL3 source term in fractional step approach.",
         "title": "Ndyniter Snl3"
      },
      "ndyniter_sbf": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 10,
         "description": "Maximum iterations for SBF source term in fractional step approach.",
         "title": "Ndyniter Sbf"
      },
      "lsoubound": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Do source terms on boundary. Useful for harbor studies and flume experiments.",
         "title": "Lsoubound"
      },
      "wae_solverthr": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 1e-06,
         "description": "Threshold for the Block-Jacobi or Block-Gauss-Seider solver.",
         "title": "Wae Solverthr"
      },
      "maxiter": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 1000,
         "description": "Maximum number of iterations for solver.",
         "title": "Maxiter"
      },
      "pmin": {
         "anyOf": [
            {
               "type": "number"
            },
            {
               "type": "null"
            }
         ],
         "default": 1.0,
         "description": "Maximum percentage of non-converged grid points allowed.",
         "title": "Pmin"
      },
      "lnaninfchk": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Check for NaN and INF. Usually turned off for efficiency.",
         "title": "Lnaninfchk"
      },
      "lzeta_setup": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Compute wave setup (simple momentum equation).",
         "title": "Lzeta Setup"
      },
      "zeta_meth": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 0,
         "description": "Method for wave setup calculation.",
         "title": "Zeta Meth"
      },
      "lsourceswam": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Use ECMWF WAM formulation for deep water physics.",
         "title": "Lsourceswam"
      },
      "block_gauss_seidel": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": true,
         "description": "Use Gauss-Seidel method on each computer block. Faster and uses less memory, but iterations depend on number of processors.",
         "title": "Block Gauss Seidel"
      },
      "lnonl": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Solve the nonlinear system using simpler algorithm (Patankar).",
         "title": "Lnonl"
      },
      "aspar_local_level": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "type": "null"
            }
         ],
         "default": 0,
         "description": "ASPAR locality level. Controls memory allocation and optimization strategies.",
         "title": "Aspar Local Level"
      },
      "l_solver_norm": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Compute solver norm ||A*x-b|| as termination check of Jacobi-Gauss-Seidel solver. Increases cost if True.",
         "title": "L Solver Norm"
      },
      "laccel": {
         "anyOf": [
            {
               "type": "boolean"
            },
            {
               "type": "null"
            }
         ],
         "default": false,
         "description": "Enable acceleration for solver.",
         "title": "Laccel"
      }
   },
   "additionalProperties": false
}

Fields:
Validators:
field amethod: int | None = 7#

Controls the advection method in geographical space. Values 0-7 represent different schemes, including explicit, implicit, and PETSc-based methods.

Validated by:
field aspar_local_level: int | None = 0#

ASPAR locality level. Controls memory allocation and optimization strategies.

Validated by:
field block_gauss_seidel: bool | None = True#

Use Gauss-Seidel method on each computer block. Faster and uses less memory, but iterations depend on number of processors.

Validated by:
  • __lowercase_property_keys__

field dmethod: int | None = 2#

Controls the numerical method in directional space. 0: No advection. 1-4: Various schemes including Crank-Nicholson, Ultimate Quickest, RK5-WENO, and Explicit FVM Upwind.

Validated by:
field dtmin_dyn: float | None = 1.0#

Minimum time step (seconds) for dynamic integration. Controls the smallest time step for triads in SMETHOD.

Validated by:
field dtmin_sbf: float | None = 1.0#

Minimum time step for SBF source term in fractional step method.

Validated by:
field dtmin_sbr: float | None = 0.1#

Minimum time step for SBR source term in fractional step method.

Validated by:
field dtmin_sds: float | None = 1.0#

Minimum time step for SDS source term in fractional step method.

Validated by:
field dtmin_sin: float | None = 1.0#

Minimum time step for the full fractional step method, where each source term is integrated with its own fractional step.

Validated by:
field dtmin_snl3: float | None = 1.0#

Minimum time step for SNL3 source term in fractional step method.

Validated by:
field dtmin_snl4: float | None = 1.0#

Minimum time step for SNL4 source term in fractional step method.

Validated by:
field epsh1: float | None = 0.01#

Convergence criteria for relative wave height.

Validated by:
field epsh2: float | None = 0.01#

Convergence criteria for absolute wave height.

Validated by:
field epsh3: float | None = 0.01#

Convergence criteria for the relative sum of wave action.

Validated by:
field epsh4: float | None = 0.01#

Convergence criteria for the relative average wave steepness.

Validated by:
field epsh5: float | None = 0.01#

Convergence criteria for the relative average wave period.

Validated by:
field fmethod: int | None = 1#

Controls the numerical method in frequency space. 0: No advection. 1: Ultimate Quickest as in WW3 (best).

Validated by:
field freqexp: float | None = 0.1#

Minimum frequency for explicit schemes. Only used if LEXPIMP=True and ICOMP=0.

Validated by:
field icomp: int | None = 3#

Controls the integration scheme for splitting and advection. 0: All explicit. 1: Implicit geographical advection. 2: Implicit advection and semi-implicit source terms. 3: Fully implicit, no splitting.

Validated by:
field idiffr: int | None = 1#

Extended WAE accounting for higher order effects. 1: Holthuijsen et al. 2: Liau et al. 3: Toledo et al.

Validated by:
field ivector: int | None = 2#

Used if LVECTOR=True. Different flavors of communications and propagation styles.

Validated by:
field l_solver_norm: bool | None = False#

Compute solver norm ||A*x-b|| as termination check of Jacobi-Gauss-Seidel solver. Increases cost if True.

Validated by:
  • __lowercase_property_keys__

field laccel: bool | None = False#

Enable acceleration for solver.

Validated by:
  • __lowercase_property_keys__

field ladvtest: bool | None = False#

For testing the advection schemes.

Validated by:
  • __lowercase_property_keys__

field lcfl: bool | None = False#

Write out CFL numbers. Use False to save time.

Validated by:
  • __lowercase_property_keys__

field lchkconv: bool | None = False#

Needs to be set to True for quasi-steady mode to compute and check the QSCONVi criteria.

Validated by:
  • __lowercase_property_keys__

field lconv: bool | None = False#

Estimate convergence criteria and write to disk (quasi-steady - qstea.out).

Validated by:
  • __lowercase_property_keys__

field ldifr: bool | None = False#

Use phase decoupled diffraction approximation. Usually True; if crash, use False.

Validated by:
  • __lowercase_property_keys__

field lexpimp: bool | None = False#

Use implicit schemes for frequencies lower than FREQEXP. Used only if ICOMP=0.

Validated by:
  • __lowercase_property_keys__

field lfiltersig: bool | None = False#

Limit the advection velocity in frequency space. Usually False.

Validated by:
  • __lowercase_property_keys__

field lfilterth: bool | None = False#

Use a CFL filter to limit the advection velocity in directional space. Similar to WW3, but mostly unused as WWMII is always stable.

Validated by:
  • __lowercase_property_keys__

field limfak: float | None = 0.1#

Proportionality coefficient for the action limiter. MAX_DAC_DT = Limfak * Limiter.

Validated by:
field litersplit: bool | None = False#

Splitting method. True: double Strang split. False: simple split (more efficient).

Validated by:
  • __lowercase_property_keys__

field llimt: bool | None = True#

Switch on/off Action limiter. Must mostly be turned on.

Validated by:
  • __lowercase_property_keys__

field lnaninfchk: bool | None = False#

Check for NaN and INF. Usually turned off for efficiency.

Validated by:
  • __lowercase_property_keys__

field lnonl: bool | None = False#

Solve the nonlinear system using simpler algorithm (Patankar).

Validated by:
  • __lowercase_property_keys__

field lsoubound: bool | None = False#

Do source terms on boundary. Useful for harbor studies and flume experiments.

Validated by:
  • __lowercase_property_keys__

field lsourceswam: bool | None = False#

Use ECMWF WAM formulation for deep water physics.

Validated by:
  • __lowercase_property_keys__

field lvector: bool | None = False#

Use optimized propagation routines for large high performance computers. Try False first.

Validated by:
  • __lowercase_property_keys__

field lzeta_setup: bool | None = False#

Compute wave setup (simple momentum equation).

Validated by:
  • __lowercase_property_keys__

field maxcflsig: float | None = 1.0#

Maximum CFL number in frequency space. Used only if LFILTERSIG=True.

Validated by:
field maxcflth: float | None = 1.0#

Maximum CFL number in Theta space. Used only if LFILTERTH=True.

Validated by:
field maxiter: int | None = 1000#

Maximum number of iterations for solver.

Validated by:
field melim: int | None = 1#

Formulation for the action limiter. 1: WAM group (1988). 2: Hersbach Janssen (1999). 3: For Cycle 4 formulation.

Validated by:
field ndyniter: int | None = 100#

Maximum iterations for dynamic scheme before limiter is applied in the last step.

Validated by:
field ndyniter_sbf: int | None = 10#

Maximum iterations for SBF source term in fractional step approach.

Validated by:
field ndyniter_sbr: int | None = 10#

Maximum iterations for SBR source term in fractional step approach.

Validated by:
field ndyniter_sds: int | None = 10#

Maximum iterations for SDS source term in fractional step approach.

Validated by:
field ndyniter_sin: int | None = 10#

Maximum iterations for SIN source term in fractional step approach.

Validated by:
field ndyniter_snl3: int | None = 10#

Maximum iterations for SNL3 source term in fractional step approach.

Validated by:
field ndyniter_snl4: int | None = 10#

Maximum iterations for SNL4 source term in fractional step approach.

Validated by:
field nqsiter: int | None = 1#

Number of quasi-steady (Q-S) sub-divisions within each WWM time step.

Validated by:
field pmin: float | None = 1.0#

Maximum percentage of non-converged grid points allowed.

Validated by:
field qsconv1: float | None = 0.98#

Fraction of grid points that must fulfill absolute wave height criteria EPSH1.

Validated by:
field qsconv2: float | None = 0.98#

Fraction of grid points that must fulfill relative wave height criteria EPSH2.

Validated by:
field qsconv3: float | None = 0.98#

Fraction of grid points that must fulfill sum. rel. wave action criteria EPSH3.

Validated by:
field qsconv4: float | None = 0.98#

Fraction of grid points that must fulfill rel. avg. wave steepness criteria EPSH4.

Validated by:
field qsconv5: float | None = 0.98#

Fraction of grid points that must fulfill avg. rel. wave period criteria EPSH5.

Validated by:
field rtheta: float | None = 0.5#

Weighing factor for DMETHOD = 1. Only useful for Crank Nicholson integration with CFL <= 2.

Validated by:
field smethod: int | None = 6#

Controls the integration method for source terms. 0: No source terms. 1-6: Various splitting and integration schemes.

Validated by:
field wae_solverthr: float | None = 1e-06#

Threshold for the Block-Jacobi or Block-Gauss-Seider solver.

Validated by:
field zeta_meth: int | None = 0#

Method for wave setup calculation.

Validated by:
validator check_amethod  »  amethod[source]#
validator check_aspar_local_level  »  aspar_local_level[source]#
validator check_dmethod  »  dmethod[source]#
validator check_dtmin_dyn  »  dtmin_dyn[source]#
validator check_dtmin_sbf  »  dtmin_sbf[source]#
validator check_dtmin_sbr  »  dtmin_sbr[source]#
validator check_dtmin_sds  »  dtmin_sds[source]#
validator check_dtmin_sin  »  dtmin_sin[source]#
validator check_dtmin_snl3  »  dtmin_snl3[source]#
validator check_dtmin_snl4  »  dtmin_snl4[source]#
validator check_epsh1  »  epsh1[source]#
validator check_epsh2  »  epsh2[source]#
validator check_epsh3  »  epsh3[source]#
validator check_epsh4  »  epsh4[source]#
validator check_epsh5  »  epsh5[source]#
validator check_fmethod  »  fmethod[source]#
validator check_freqexp  »  freqexp[source]#
validator check_icomp  »  icomp[source]#
validator check_idiffr  »  idiffr[source]#
validator check_ivector  »  ivector[source]#
validator check_limfak  »  limfak[source]#
validator check_maxcflsig  »  maxcflsig[source]#
validator check_maxcflth  »  maxcflth[source]#
validator check_maxiter  »  maxiter[source]#
validator check_melim  »  melim[source]#
validator check_ndyniter  »  ndyniter[source]#
validator check_ndyniter_sbf  »  ndyniter_sbf[source]#
validator check_ndyniter_sbr  »  ndyniter_sbr[source]#
validator check_ndyniter_sds  »  ndyniter_sds[source]#
validator check_ndyniter_sin  »  ndyniter_sin[source]#
validator check_ndyniter_snl3  »  ndyniter_snl3[source]#
validator check_ndyniter_snl4  »  ndyniter_snl4[source]#
validator check_nqsiter  »  nqsiter[source]#
validator check_pmin  »  pmin[source]#
validator check_qsconv1  »  qsconv1[source]#
validator check_qsconv2  »  qsconv2[source]#
validator check_qsconv3  »  qsconv3[source]#
validator check_qsconv4  »  qsconv4[source]#
validator check_qsconv5  »  qsconv5[source]#
validator check_rtheta  »  rtheta[source]#
validator check_smethod  »  smethod[source]#
validator check_wae_solverthr  »  wae_solverthr[source]#
validator check_zeta_meth  »  zeta_meth[source]#