Architecture Overview
This document provides a comprehensive overview of Rompy's architecture, explaining the advanced design patterns and component interactions. For basic concepts, please see the User Guide.
Rompy follows a modular, plugin-based architecture that separates concerns between configuration, execution, and post-processing:
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ ModelRun │ │ Configuration │ │ Execution │
│ │───▶│ │───▶│ │
│ - Time periods │ │ - Grid │ │ - Local backend │
│ - Output dir │ │ - Data sources │ │ - Docker backend│
│ - Run ID │ │ - Physics params │ │ - HPC backend │
│ - etc. │ │ - Templates │ │ - etc. │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│
│ ┌──────────────────┐
└───▶│ Post-processing │
│ │
│ - Custom │
│ processors │
│ - Result analysis│
│ - Visualization │
└──────────────────┘
Advanced Architecture Patterns
1. Separation of Concerns
- Configuration (what to compute) is separate from execution (how to compute)
- Model setup is independent of execution environment
- Data sources are abstracted from model implementation
2. Composition over Inheritance
- Complex configurations built by composing simpler components
- Backends compose different capabilities rather than inheriting behavior
3. Type Safety with Pydantic
- Configuration objects validated at runtime
- Clear interfaces with type hints
- Automatic serialization/deserialization
4. Late Binding
- Execution backends resolved at runtime
- Enables the same configuration to run in different environments
Plugin Architecture
Rompy uses Python entry points for extensibility:
Entry Points
rompy.config: Model configuration classesrompy.run: Execution backendsrompy.postprocess: Post-processing modulesrompy.source: Data source implementations
Extending Functionality
New components can be added through the plugin system:
# Example: Adding a new model configuration
# Register in setup.py/pyproject.toml:
# [project.entry-points."rompy.config"]
# mymodel = "mypackage.config:MyModelConfig"
class MyModelConfig(BaseConfig):
model_type: Literal["mymodel"] = "mymodel"
# Custom model configuration attributes
Data Flow Architecture
1. Configuration Phase
2. Generation Phase
3. Execution Phase
4. Post-processing Phase
Design Principles
1. Reproducibility
- Model configurations are fully serializable
- Same configuration produces identical results across environments
- Execution context tracked and logged
2. Extensibility
- Plugin system allows adding new models without changing core code
- Backend-agnostic design supports multiple execution environments
- Hook points available for custom processing
3. Environment Agnostic
- The same model configuration can run in multiple environments (local, HPC, cloud)
- Execution backends are resolved at runtime based on configuration
Module Structure
Core Modules
rompy.model: Contains the mainModelRunclassrompy.core: Basic abstractions (config, grid, data, source)rompy.backends: Backend implementations and configurationrompy.run: Run backend implementationsrompy.postprocess: Post-processing implementationsrompy.pipeline: Pipeline orchestrationrompy.logging: Logging and formatting framework
Key Classes and Their Responsibilities
| Class | Module | Responsibility |
|---|---|---|
| ModelRun | rompy.model | Main orchestrator for model runs |
| BaseConfig | rompy.core.config | Base configuration model |
| BaseGrid | rompy.core.grid | Base grid definition |
| DataGrid | rompy.core.data | Data grid abstraction |
| SourceBase | rompy.core.source | Base data source interface |
| LocalConfig | rompy.backends | Local backend configuration |
| DockerConfig | rompy.backends | Docker backend configuration |
| LocalRunBackend | rompy.run | Local execution backend |
| DockerRunBackend | rompy.run.docker | Docker execution backend |
Integration Points
Rompy integrates with various external systems:
Data Systems
- NetCDF files via xarray
- Intake catalogs for data discovery
- Various file formats through fsspec
Execution Systems
- Docker for containerized execution
- HPC systems via job schedulers
- Cloud platforms for distributed computing
Development Tools
- Pydantic for configuration validation
- Cookiecutter for template-based generation
- Standard Python logging
Future Architecture Considerations
Scalability
- Support for distributed model components
- Parallel execution of ensemble members
- Asynchronous job submission
Extensibility
- Additional plugin interfaces for custom workflows
- Machine learning integration for parameter estimation
- Enhanced visualization capabilities
Next Steps
- Review the Plugin Architecture for more details on extending Rompy
- Check the Developer Guide for advanced development topics
- Look at the API Reference for detailed class documentation